

Highlights

- ★ We developed a Bayesian network (BN) to predict acute toxicity of chemicals to juvenile fish
- ★ The BN uses fish embryo toxicity data in a quantitative weight-of-evidence approach
- ★ The BN integrates information on physical and toxicological properties of chemicals
- ★ The BN has **continuous nodes** for capturing the variability of input values
- **★** The BN predicts **correct toxicity intervals** for 69-80% of the test cases
- ★ The BN model is **publicly available** for testing through a web interface: http://demo.hugin.com/example/FET

Background

- Reduction, Replacement or Refinement of animal testing wherever possible is required by legislations (e.g. EU Directive 2010/63/EU).
- Fish Embryo Toxicity (FET) testing could be an alternative to juvenile **fish** in acute toxicity testing. However, FET data are not yet accepted as a replacement for regulatory purposes such as REACH.
- The European Chemicals Agency (ECHA) has therefore recommended development of a **weight-of-evidence (WoE)** approach for FET data.

Objectives

- 1. To **develop and evaluate a BN model** for predicting toxicity of substances to juvenile fish from embryo toxicity data in combination with other relevant information (Moe et al. 2019)
- 2. To apply the BN model in a WoE approach which can support replacing juvenile fish toxicity testing with fish embryo toxicity testing
- To make a **publicly available user interface to the BN** for demonstration, testing and feedback

Table 1. Examples of conditional probability tables (subsets) based on different approaches. (a) Counts of observations of toxicity to juvenile fish (shown for 9 out of 42 chemical categories). (b) Expert judgement: the algorithm for combining two out of the four lines of evidence by equal weighting.

Toxicity to fish predicted												Toxicity to fish															
from chemical category	cal category																										
Chemical Category	Aniline	Anionic	Esters	Esters	Imidazole	Neutral	Phenol	Quinone	Substitu-	Unknown		line 1	very low				low					medium					
		surfac- (dithio- (monothi-				organic			ted urea	/other									10 10		′		<u> </u>	neurun			
		tant	phos-	phos-								line 2	very	low	med-	high	very	very	low	med-	high	very	very	low	med-	high	very
			phates)	phates)									low		ium		high	low		ium		high	low		ium		high
very low	0.08	0		0 0	0.25	0.455	C) (0 0	0		vorylow	1	05	0.22	0.25	0.2	05	0	0	0	0	0.22	0	0	0	0
low	0.80	0.333	0.18	4 0.026	0	0.345	0.363	6	0.45	0		very low	T	0.5	0.55	0.25	0.2	0.5	0	0	0	0	0.55	0	0	0	0
medium	0.08	0.571	0.26	3 0.564	0.75	0.166	0.118	3 (0 0.05	0	1	low	0	0.5	0.33	0.25	0.2	0.5	1	0.5	0.33	0.25	0.33	0.5	0	0	0
high	0.04	0.095	0.50	0 0.410	0	0.021	0.520) 1	1 0.5	0		medium	0	0	0.33	0.25	0.2	0	0	0.5	0.33	0.25	0.33	0.5	1	0.5	0.33
very high	0	0	0.05	<mark>3</mark> 0	0	0.014	. C) (0 0	0		high	0	0	0	0.25	0.2	0	0	0	0.22	0.25	0	0	0	0.5	0.22
unknown	0	0)	0 0	0	0) C) (0 0	1		nign	0	0	0	0.25	0.2	0	0	0	0.55	0.25	0	0	0	0.5	0.55
Sum	50	42	. 7	6 39) 4	145	204	13	3 20			very high	0	0	0	0	0.2	0	0	0	0	0.25	0	0	0	0	0.33

(a) Count of observations

A hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence

Conceptual model

Figure 1. Conceptual version of the BN model

Data and Methods

- The model has four lines of evidence (Figure 1)
- Toxicity data for 237 substances include QSAR, EC50 for algae and Daphnia, and LC50 for embryo and juvenile fish (Rawlings et al. 2019)
- Toxicity values are discretized to **5 intervals**:
 - very low: >100 mg/L
 - 5-100 mg/L • low:
 - medium: 0.5-5 mg/L
 - 0.01-0. 5 mg/L • high:
 - very high: <0.01 mg/L
- The links between nodes are quantified by **conditional probability tables (CPT)**, where the probabilitites are obtained by various methods, e.g.
 - Count of observations (e.g. Table 1a),
 - Equal weighting (e.g. Table 1b)
- The BN includes **continuous nodes**, to account for variability in input values
- Model evaluation was performed with different subsets of the dataset

(b) Expert judgement

(a) Carbamazepine: low observed toxicity level

(b) Triclosan: high observed toxicity level

Figure 2. Examples of model predictions for two substances: (a) Carbamazepine, which has low observed toxicity level to juvenile fish; (b) Triclosan, which has high observed toxicity level to juvenile fish. For simplicity, only 3 out of 10 continuous input nodes are displayed.

¹Norwegian Institute for Water Research (NIVA), Oslo, Norway ²Western Washington University, USA ³Procter & Gamble (P&G), USA ⁴HUGIN Expert, Denmark ⁵Dep. of Computer Science, Aalborg University, Denmark

email: jmo@niva.no

Results

- The BN model can predict toxicity to juvenile fish more accurately than fish embryo data alone (e.g. Figure 2a)
- Sensitivity analysis indicate that the model predictions are most influenced by components based on data, and less by those based on expert judgement
- The BN predicted **correct toxicity interval** to juvenile fish for **69-71%** of the substances in the three largest data subsets (n = 77, 106, 159)
- The BN predicted correct toxicity interval for 80% in the smallest data subset, with the strictest quality criteria (n = 20)
- In the 4 cases of incorrect predictions, the BN underestimated the toxicity level
 - 2,4-Dichlorophenol, 4-Chlorophenol, Malathion and Naphthalene
 - However, these 4 substances are more toxic to algae or **Daphnia**, which will therefore drive the risk assessment

Further developments

- Higher resolution of toxicity intervals
- Use of machine learning to optimize the weighting of the lines of evidence
- Model validation with fish embryo and juvenile toxicity data from more sources
- Expand the BN model with more lines of evidence
- Refinement of the web interface based on feedback from users

References

Moe, S.J., A.L. Madsen, K.A. Connors, J.M. Rawlings, S.E. Belanger, W.G. Landis, R. Wolf, A.D. Lillicrap. 2019. Development of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence. *Environmental* Modelling and Software (in review)

Preprint: https://www.biorxiv.org/content/10.1101/750935v1

Rawlings, J.M., S.E. Belanger, K.A. Connors, G.J. Carr. 2019. Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. Environmental Toxicology and Chemistry 38: 671-681.

Acknowledgements

This work was supported by NIVA's research programme DigiSIS: New digital methods for monitoring and research.

This poster

Web interface to BN model

NIVA's Section for Ecotoxicology and Risk Assessment

