To main content
Norsk
Publications

Stream ecosystem properties and processes along a temperature gradient

Academic article
Year of publication
2011
Journal
Aquatic Ecology
External websites
Cristin
Doi
Involved from NIVA
Jes Jessen Rasmussen
Contributors
Jes Jessen Rasmussen, Annette Baattrup-Pedersen, Tenna Riis, Nikolai Friberg

Summary

We surveyed macrophyte community structure and measured community metabolism and nutrient uptake along a temperature gradient (9.7–17.4°C) in four Icelandic streams influenced by geothermal heating. The study streams are part of the geothermal area in Hengill that is uniquely characterised by streams with comparable water chemistry despite the geothermal influence. Stream metabolism was studied applying the diurnal upstream–downstream dissolved oxygen change technique. Nutrient uptake was studied by adding solutions of nitrogen and phosphorus together with a conservative tracer. Rates of primary production (GPP) and uptake of nitrate–N and phosphate-P increased with increasing stream temperature. GPP was 20 times higher (up to 12.99 g O2 m−2 day−1) and rates of nutrient uptake were up to 30-times higher (up to 22.99, 13.31 and 7.94 mg m−2 h−1 for ammonium, nitrate and phosphate, respectively) in the warmest streams compared with the coldest. Furthermore, macrophytes, when present, were strongly controlling ecosystem processes. Our study implies that temperature may affect stream ecosystem processes both directly (i.e. physiologically) and indirectly (i.e. by changing other structural parameters).